If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1296-0.36x^2=0
a = -0.36; b = 0; c = +1296;
Δ = b2-4ac
Δ = 02-4·(-0.36)·1296
Δ = 1866.24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1866.24}}{2*-0.36}=\frac{0-\sqrt{1866.24}}{-0.72} =-\frac{\sqrt{}}{-0.72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1866.24}}{2*-0.36}=\frac{0+\sqrt{1866.24}}{-0.72} =\frac{\sqrt{}}{-0.72} $
| 72=6(j+6) | | -85-15x=-12+47 | | 2a/5-3a/2=4a/10 | | 14v-7v=63 | | 4x^2-65=16x | | 6x+6=4x+45 | | t^2-4t=-1 | | 3a-6/4=5a+3/2 | | 6x(2x-3)=4x(3x-4)-4 | | X-4=2.5(x+3.5) | | -x-66=34-6x | | w=28-3w | | 6a+2=-3a+5 | | 3x+2x+x+1=180 | | -1/3b=-15 | | 42=3x-13 | | 6+8v=10v | | -10-6x=-104 | | 3x/5-2=×+1/3 | | -2+k=16 | | 9x2-3/4x=0 | | 8x-90=14x+30 | | x+(2x-10)+(3x-50)=180 | | $2.49+$1.24p=$11.17 | | 14-(-2)=x | | -4=-1(3)+b | | -4=-1+b | | 3/9=4/d | | ?x5=75 | | 75-(-50)=x | | -7x-60=36-11x | | 10x+44)=(8x-23) |